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Abstract 

A method to obtain the crystal potential from the 
intensities of the diffracted beams in high-energy 
electron diffraction is proposed. It is based on a series 
of measurements for specific well determined orienta- 
tions of the incident beam, which determine the moduli 
of all elements of the scattering matrix. Using unitarity 
and the specific form of the scattering matrix (includ- 
ing symmetries), an overdetermined set of non-linear 
equations is obtained from these data. Solution of these 
equations yields the required phase information and 
allows the determination of a (projected) crystal 
potential by inversion that is unique up to an arbitrary 
shift of the origin. The reconstruction of potentials from 
intensities is illustrated for two realistic examples, a 
{111} systematic row case in ZnS and a [110] zone-axis 
orientation in GaAs (both noncentrosymmetric crys- 
tals). 

1. Introduction 

Electron diffraction is increasingly being used to obtain 
quantitative information on the crystal potential 
(Spence, 1993). In particular, one is interested in the 
amplitude and phase of the lower-order coefficients of 
the Fourier expansion of the periodic potential, often 
referred to as the structure factors. At present, fitting 
procedures using intensity patterns in convergent-beam 
electron diffraction (CBED) are used to provide 
information on the amplitudes and phases of these 
coefficients (Spence, 1993). These fitting procedures 
involve the repeated solution of the forward or direct 
solution of the fundamental equations for electron 
diffraction. In this paper, we are concerned with 
obtaining the structure factors from measurements of 
dynamical beam intensities without at any stage solving 
the forward or direct problem. This involves the solu- 
tion of both a phase and an inversion problem. 

When multiple scattering can be ignored, the effec- 
tive scattering amplitude is of simple form and reduces 
essentially to a Fourier transform of the crystal poten- 
tial. This situation occurs for photon and neutron 
scattering on crystals where the effective interaction is 
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rather weak and a single-scattering (kinematical) 
approximation yields a fairly good description of these 
processes. In contrast to photons and neutrons, elec- 
trons experience a rather strong interaction in a crystal 
and in general multiple-scattering (dynamical) contri- 
butions are essential. However, no general relationship 
is known between dynamical diffracted-beam intensities 
and the structure factors. 

For accelerating voltages around 100 keV and more, 
N-beam (N > 2) diffraction is dominant (Moodie & 
Whitfield, 1994). Certain N-beam cases can be reduced 
to two-beam form for both centrosymmetric (Fukuhara, 
1966; Blume, 1966; Kogiso & Takahashi, 1977; Takeda, 
1987) and noncentrosymmetric crystals (Moodie & 
Fehlmann, 1993; Moodie & Whitfield, 1994). In some 
cases, closed-form inversion from scattering intensities 
to structure factors is possible (Moodie, 1979; Allen & 
Rossouw, 1993; Moodie et al., 1996). 

There has been considerable work recently proposing 
various techniques to construct the projected crystal 
potential from measured data. Peng & Wang (1994) 
investigated the conditions under which an 'electron- 
density map' would provide reliable information on the 
potential. Peng & Zuo (1995) presented an inversion 
algorithm assuming small deviations from a known 
potential. Lentzen & Urban (1996) developed a 
method, based on the simulated-annealing algorithm, 
for reconstruction of the projected crystal potential. 
Zou et al. (1996) considered the retrieval of the 
projected potential from a single image of a thin 
sample. Huang et al. (1996) have also proposed an 
empirical approach to obtaining potential maps. 

Phase information on the diffracted beams are 
available in electron holography or from images 
recorded in a defocus series (Tonomura, 1987; Lichte, 
1991; Van Dyck et al., 1996) since the scattered wave 
function at the exit surface of the crystal may be 
reconstructed from the data. A possible method for 
obtaining the crystal potential by inversion of the 
complex wavefield at the exit surface of the specimen 
has been proposed by Beeching & Spargo (1993). It is 
based on a reversal of the multislice algorithm and is 
limited to thin crystals (of the order of 100 A or less). 
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The method fails when the thickness of the crystal is 
such that the scattering is sufficiently strong for domi- 
nant Bloch-wave structure to appear in the wave 
function, i.e. there is strong dynamical scattering 
(Beeching et al., 1994). Other methods to obtain 
structural information by inversion have been discussed 
by Gribelyuk (1991) and Scheerschmidt & Knoll (1994). 
The so-called 'direct phasing' and 'Fourier' techniques 
to obtain structural information from nearly kinema- 
tical intensity data have been reviewed by Dorset 
(1995). The maximum-entropy approach to solving the 
phase problem has been reviewed by Gilmore (1996). 

In this paper, we propose a method to obtain the 
crystal potential from the intensities of the diffracted 
beams in high-energy electron diffraction. The scat- 
tering matrix S relates the incident electron wave 
function to the wave function at the exit surface of the 
crystal. The moduli of the elements of the S matrix for a 
given principal orientation of the incident beam can be 
obtained from a series of measurements of the inten- 
sities of diffracted beams at that and other orientations 
of the incident beam. The unitarity of the S matrix 
provides constraints on the phases of the elements of S 
but they are insufficient to solve the phase problem. 
Here we demonstrate within the context of a general 
N-beam approximation how the unitarity of S and the 
specific form of the scattering matrix (including sym- 
metries) yield constraints that allow us to solve the 
phase problem and to find a (projected) crystal poten- 
tial by inversion. We discuss the conditions under which 
unique solutions to the phase and inversion problems 
are found. The reconstruction of potentials from beam 
intensities and possible ambiguities are illustrated for a 
{111} systematic row case in ZnS and for the case of the 
[110] zone-axis orientation in GaAs (both noncen- 
trosymmetric crystals). The zone-axis results are com- 
pared with the projected crystal potential that was 
reconstructed recently by the simulated-annealing 
algorithm for the same case (Lentzen & Urban, 1996). 

We do not include absorption in the considerations of 
the present paper because it would be an unnecessary 
complication for the questions of principle discussed 
here. Apart from this, the neglect of absorption is a 
justified assumption for thin crystals and has also been 
made in other very recent related work (Cheng et al., 
1996; Lentzen & Urban, 1996). 

& Suzko, 1990), we will refer to this as the direct 
problem. 

The spatial distribution of the crystal potential is 
reconstructed from the Fourier summation, 

V(r) : (h 2/2m) ~_, Ug exp(ig • r) : y~ Vg exp(ig • r), 
g g 

(1) 

where Ug (or Vg) are the Fourier coefficients" of the 
potential due to elastic scattering and g are reciprocal- 
lattice vectors. In practice, the sum over all reciprocal- 
lattice vectors is truncated to a subset of the physically 
important ones. Because we are not including absorp- 
tion, the potential V(r) is real and consequently the 
relationship Ug -- U*g is valid. Furthermore, we make 
the assumption that if the term with coefficient Ug is 
included in the expansion then so is U g. For noncen- 
trosymmetric crystals, these coefficients are complex 
and for the centrosymmetric case [where there exists a 
center of symmetry such that V(r) = V( - r )  for all r], 
the origin can be chosen so that they are real. Consis- 
tent with the periodic nature of the potential, the total 
wave function for the fast electron inside the crystal is a 
superposition of Bloch states tpi(r) with the amplitudes 
~ i  

~(r) : y~ c~;gC(r) : y~ c~; ~--~ C~g exp[i(k ~ + g) .  r]. (2) 
i i g 

Each Bloch wave is characterized by an intrinsic 
wavevector k i that depends on the energy of the inci- 
dent beam as well as on the crystal structure and can be 
obtained by a solution of the Schrfdinger equation. 
Boundary conditions allow us to express each k' in the 
form (Humphreys, 1979; Allen & Rossouw, 1989) 

k i = K + y i f i ,  (3) 

where K is the wavevector of the incoming plane 
wave in the crystal (corrected for refraction, i.e. 
K 2 = k 2 + U 0' where k is the magnitude of the wave- 
vector in vaccuum). The unit vector fi is a surface 
normal directed into the top crystal surface and the 
are the Anpassung. 

Using the expansions for V(r) and ~p(r), the Schr6- 
dinger equation for high-energy electrons within the 
crystal can be recast in the form (Humphreys, 1979) 

2. The direct scattering problem 

Firstly, we recapitulate some essential elements of the 
solution of the Schr6dinger equation starting from the 
periodic crystalline potential pertinent to electron 
diffraction (Humphreys, 1979; Allen & Rossouw, 1989) 
using the Bloch-wave formulation. Following the stan- 
dard terminology (Chadan & Sabatier, 1989; Zakhariev 

.AC = 2KC[Y']D, (4) 

where [ ]D denotes a diagonal matrix. For discussion of 
the assumptions implicit in this equation and the 
constraints on its validity, see Allen & Rossouw (1989) 
and references therein. 

The matrix .A on the left-hand side of equation (4) is 
of the form 
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--(k t + h) 2 

A =  U_~ 

U-t -~  
U_m 

U i - t  Ui Uh+t U2~ " '"  
- ( k ,  + g)2 Ut U2 t Ug+l ~ . . .  

U_ t - k ~  U t U h . . .  
U_2g U_ t _(kt  _ g)2 U._|+h . . .  

U_b_ t U_ b U_t,+t - ( k ,  - h) z . . .  
. . . .  

( s )  

The wavevector k t is the tangential component of the 
incident electron wavevector along the plane defined by 
the reciprocal-lattice vectors• The off-diagonal elements 
in .A are just the Fourier coefficients in the expansion 
for the potential given by equation (1). Since the 
potential is real, Ug = U*__g and consequently .,4 is 
Hermitian. Furthermore, we have made the tacit 
assumption that, for every reciprocal-lattice vector g, 
the vector - g  is included in the representation of .A and 
this leads to a symmetry across the 'anti-diagonal' of .A. 
In an N-beam approximation, .A is an N x N matrix. 
Representing A by {.Am.,, }, where m and n label rows 
and columns, respectively, we express this symmetry as 

. A m ,  n : ,AN+I_n,N+I_m, with m # n if k t ~;~ 0. 

(6) 

Equation (4) is in principle an eigenvalue equation for 
.,4 with eigenvalues 2Ky/. The ith column of the matrix 
C, 

C = 

c ~  Q . . .  c[ ,  . . .  
C 1 C~_ . . .  C g  . . .  

Clg C2g 0 • . • _g  • • . 

C[h C2-h . . .  CLh . . .  

(7) 

represents an eigenvector of .A associated with the 
eigenvalue 2Ky ~ and contains the expansion coefficients 
C[ of equation (2). In an N-beam approximation, there 
are N such eigenvalues and eigenvectors but generally 
there are more than N different Fourier coefficients of 
the potential involved in A. 

Since A is Hermitian, the eigenvectors of .A are 
orthogonal to each other and can be normalized to form 
a unitary matrix C. The same eigenvectors can be used 
for a spectral representation of .,4 

.Ag,u = 2 K  ~_, C'gFic~, *, (8) 
i 

where the sum extends over N terms within the 
framework of an N-beam approximation 

To obtain the total electron wave function within the 
crystal, we need the coefficients a i, which are obtained 
from the boundary conditions at the top surface of the 
crystal These require that the amplitude of the directly 

transmitted beam is 1 and the amplitudes of the 
diffracted beams are 0. From equation (2), it can be 
seen that, since C is unitary, cg = C~*. At the exit surface 
of the crystal, the Bloch waves decouple into plane 
waves again• At this transition, the tangential compo- 
nents remain unchanged and therefore the amplitude of 
the beam g for a crystal of thickness t is obtained from 
equation (2) as 

V g ( t )  = ~ i i o~ Cg exp(iy/t). (9) 
i 

Introducing the vector v = (Vg), we can write equation 
(9) in the compact form 

v = S u .  (10)  

The vector u = (3~) characterizes the incident beam 
and 

S = exp[ i (1 /2g ) .A t ]  = C[exp( iy i t )]oC t = C[Ai]oC ~ 

(11) 

is the scattering matrix, where once again [ ]D denotes a 
diagonal matrix. The scattering matrix relates the inci- 
dent electron wave at the entrance surface of the crystal 
to the elastic scattered or diffracted wave at the exi t  
surface of the crystal of thickness t (Humphreys, 1979). 
Schematically, we can represent S as 

( 

~.~ -'-- ° . °  

Sh ,h  Sh ,g  Sh ,0  S h , - g  S h , - h  " ' "  

Sg ,h  Sg ,g  Sg ,o  Sg ,  _g  S g , - h  • . .  

So,h So, g So.o So, g So_h . . .  

S _ g , h  S _ g , g  S_g ,O  S _ g ,  _g  S _ g , - h  • - -  

S - h , h  S - h , g  S - h , O  S - h , - g  S - h , - h  • • • 

(12) 

with the matrix elements 

,Sg, h = Y~ C~ exp(i~/t)C~*. (13) 
i 

Because of the hermiticity of .A, the scattering matrix S 
is unitary• It is also obvious from equation (11) that the 
eigenvectors of S are just those of .A 

For a given orientation of the incident beam, the 
quantities that can be measured are the intensities of 
the diffracted beams, i.e. we obtain for the beam g that 

I ~  exp(iy't) 2 lg Ivg(t)l 2 r,i ,r , i  " (14) - - "~o "g --ISgol 2. 

This means that, for a given principal orientation of the 
incident beam, only the moduli of the elements in the 
central column of the scattering matrix S shown in 
equation (12) are measured. However, by tilting the 
incident beam to appropriate secondary orientations 
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related to the principal one by tilts of a reciprocal- 
lattice vector, we can measure the moduli of all the 
elements of S. This is discussed further in the next 
section. 

3. The phase and inverse scattering problems 
The experimental determination of the phase and 
recovery of the potential is one of the most important 
questions in electron-crystal diffraction. The key points 
that need to be addressed in the solution of the phase 
and inversion problems are the existence of a solution, 
the uniqueness of any solution and an effective algor- 
ithm to find any solution(s). Firstly, let us consider the 
question of obtaining the matrix ..4 from a knowledge of 
S. The matrix .,4 contains as its off-diagonal elements 
Fourier coefficients Ug of the crystal potential and this 
allows evaluation of V(r). From equation (11), we can 
write 

. , 4  : ( 2 K / i t )  In(S) 

= ( 2 K / i t ) C l n [ A ' ] o C  * 

= (2K/ i t )C[ iy ' t ]oC t. (15) 

Therefore, knowing S, we can obtain .,4 and after 
further evaluation the crystal potential V(r). However, 
without restrictions on the domain, the logarithm is not 
a unique function and yields a manifold number of 
solutions, 

iy i t  --  i(O' + 2nizr), n i - -  0, +1, 4-2 . . . . .  (16) 

Apart from this unpleasant ambiguity, the determina- 
tion of .At via equation (15) requires knowledge of all 
the complex elements of S. Measuring the intensities of 
the diffracted beams at the principal orientation of the 
incident beam gives us the moduli of the central column 
of S-matrix elements in equation (12). Assuming an 
N-beam approximation, the moduli of the remaining 
N 2 - N  elements can be obtained by the fact that 
intensities of the beams at other orientations are related 
to the remaining S-matrix elements for the principal 
orientation. This follows from the fact that (K/istner, 
1993) 

Cig_h(K q - h ) =  Cig(K) 
(17) 

y'(K -t-h) -- y'(K), 

where we now indicate the orientation dependence of 
the C~ and F' explicitly. Therefore, by orientating the 
incident beam in directions K + h, where h are reci- 
procal-lattice vectors, the moduli of all elements of the 
S matrix for the principal orientation (at which we wish 
to solve the phase and inversion problems) can be 

obtained3 Besides the moduli of the S-matrix elements, 
we also need their phases to determine the ,,4 matrix 
and hence the potential (up to an arbitrary choice of 
origin). 

An obvious constraint on the phases of the elements 
of the S matrix is provided by the unitarity of S and this 
leads to the following equations: 

E Si.lS~*,l --- (~i,]" (18) 
1 

These equations can be recast into the form 

[Sg,f[ ISh,fl coS(0g,f - 0 h , f )  = Sg,  h 
f 

ISg.tlISh.fl sin(0g,t -- 0h,f) = 0, 
f 

(19) 

where 0g,t denotes the phase of Sg.t. In an N-beam 
approximation, unitarity of S is not exactly satisfied but 
it is reasonable to assume that the defect is negligible. 
Hence, equation (19) leads to a system of 2N ~ equa- 
tions. Actually, there are only N 2 -  N independent 
constraint equations because the interchange of g and h 
leads to the same equations and for g = h equations 
(19) either contain no phase information or are trivial. 
Therefore, unitarity on its own is in general not suffi- 
cient to determine all of the phases. 

The fact that unitarity of the S matrix is not sufficient 
to determine the phases of its elements is contrary to 
the recent conjecture by Tivol (1995). This conjecture 
was based on a dispersion relation similar to that for 
central potentials where the phase problem can be 
solved up to some well understood ambiguities 
(Newton, 1968; Lun et al., 1994; Huber et al., 1996). 
However, there is a crucial difference between the 
scattering from a central potential and the scattering off 
a crystal. In the former, the scattered waves are not 
spatially separated from the incident wave (Newton, 
1968) since in point scattering the S matrix takes into 
account the scattered wave as well as contributions of 
the incident wave. This is completely different in elec- 
tron-crystal scattering, where the crystalline slab 
provides a natural separation of both regimes. Hence, a 
measurement of electron intensities after transmission 
through the crystal yields [Sg.h[ 2 directly and not, as in 
point scattering, the absolute value of the scattering 
amplitude ( IS-112) .  This was not taken into account 
by Tirol (1995). 

The S matrix depends on both the crystal potential 
(the off-diagonal elements of ,,4) and the energy and 
orientation of the incident beam (information 

t Since this paper was submitted, we have become aware of related 
work by J. C. H. Spence (1998) entitled Direct Inversion of  Dynamical 
Diffraction Patterns to Structure Factors. In that paper, the periodicity 
relations of the Bloch waves are also exploited and there is a clear 
discussion in that paper that explains precisely how such a through-tilt 
series of measurements would be implemented. 
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contained in the diagonal elements of .,4). It seems 
reasonable that this latter information should also be 
exploited in the phase and inversion problem. This can 
be accomplished by imposing the known diagonals of 
the .,4 matrix as constraints on S: 

(2K/it)(ln S)g,g = - (k ,  + g)2, (20) 

which yields 2N real constraint equations. However, this 
introduces N further unknowns into the problem via 
equation (16). Nevertheless, equations (19) and (20) 
together provide us with (N 2 -  N ) + 2 N  equations 
containing N 2 +  N unknowns. However, they do not 
provide a unique solution to the phase and inversion 
problem, as we will show by example in the next 
section. They allow a discrete set of .A matrices that all 
have the same diagonal elements and are Hermitian 
[this is implied by equation (15) and the unitarity of S] 
but do not all have the symmetries given in equation 
(6). The potentials obtained this way can be unphysical. 
To ensure that .4 has the correct symmetries across its 
'anti-diagonal', we require that the S matrix satisfy 

[In S]m,, = [In S]N+I_n,N+I_m 
with m=/6n if k t # O .  (21) 

An S matrix that satisfies eqations (18), (20) and (21) is 
found by exhaustive testing to yield an S matrix that is 
related to a test input S by a similarity transform, as we 
will see in ~4.1, 4.2. These S matrices yield projected 
potentials that are related to each other by a shift of 
origin. This shift of origin is of course unimportant since 
the choice of origin is arbitrary and does not affect 
observed intensities. 

If we use the constraint equations (20) or (21) in the 
solution of the phase and inversion problem then we 
need to evaluate In S. This then introduces the param- 

'eters n i in equation (16) into the problem. Therefore, in 
addition to the N 2 phases in S we have to simulta- 
neously determine these N parameters. Unitarity 
together with equation (20) provide as many constraint 
equations as independent parameters, i.e. N 2 + N. The 
symmetry constraints given by equation (21) yield 

i constraint equations (real and imaginary ½N 2 - N + ~  
parts). Therefore, we have N 2 +  N unknowns and, in 

3 N 2 principle, ~ -4-1 constraint equations. (N is implicitly 
assumed to be odd, which is consistent with our 
assumption that, for every g included in our basis set, 
we have also included -g . )  

It should be noted that for a centrosymmetric crystal 
the S matrix is symmetric and the number of unknown 
phases is reduced to N ( N  + 1)/2. We also point out 
that, for an exact zone-axis orientation (or the 
symmetric orientation for a systematic row) (k t --0) ,  
the eigenvectors of S satisfy 

Ci ,  = C~*. (22) 

It then follows that the relation 

~'~m,n = ~ ' ~ N + l - n , N + l - - r n  (23) 

holds. Consequently, S has a similar symmetry across 
the 'anti-diagonal' as .A. The product of two such 
matrices is again a matrix of the same symmetry. It 
therefore follows that equation (21) is immediately 
satisfied if we impose equation (23) on the problem 
from the outset. This means that the problem can be 
solved with fewer unknowns. 

We will illustrate the discussion in this section by 
means of two model solutions of the phase and inver- 
sion problems in the next section. 

4. Model solutions of phase and inversion problem 

4.1. Systematic row case 

For tilts along a systematic row with beams 
{ . . . .  - 2 g , - g ,  0, g, 2g . . . .  }, the .,4 matrix becomes a 
band matrix of the form 

A= 

- ( k  t + 2g) 2 UI U2g U3g U4g 
U_ t - (k ,  + g)2 UI U2 s U~ s 
U-2t U_, -~  U I G, 
U_~, U_2t U_ t -(k,  - g)2 Ut 
U_ag U_3g U_2I U_g - ( k  t - 2g) 2 

. . . .  

(24) 

As an example, we will consider a five-beam case 
{ - 2 g , - g ,  0, g, 2g} with the incident beam in the 
symmetric orientation (k t = 0). There are four inde- 
pendent Fourier coefficients in ,4. The corresponding S 
matrix, given by 

( S2~,2~ S2g.g S2g.o 52~_~ S2~-2~ / 
/ Sg,2g Sg,g Sg,o Sg_g Sg._2g 

S = / S0,2~ So.g So, 0 So,-g So._2g , 
/ ~ S_g.2g S_g.g S_g,o S_g_~ S_g _2g 
\S-2g.2g S-2g,g S-2g,o S-2g,-g S-2g,-2g 

(25) 

has the symmetries given by equation (23). 
For the {111} systematic row case in the noncen- 

trosymmetric crystal ZnS, we have calculated a model 
.,4 matrix for a sample at 300 K. The potential coeffi- 
cients incorporate a Debye-Waller factor to account for 
the thermal motion of the atoms. A temperature factor 
B = 0.8676 ,~2 was used for Zn and B -- 0.7477 ,A, 2 for S 
(Reid, 1983). From the .,4 matrix, we have evaluated the 
corresponding S matrix for 100 keV electrons incident 
in the symmetric orientation on a crystalline slab 100,4, 
thick. The moduli of these model S-matrix elements 
have been used as input to test the feasibility of the 
proposed algorithm for the solution of the phase and 
inversion problem. Firstly, we have used the unitarity of 
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Fig. 1. The  phases  of  the  e i g e n v a l u e s  of  the  S ma t r i x  for  1000 so lu t ions  of  the  phase  p r o b l e m  sa t i s fy ing  the  u n i t a r i t y  c o n s t r a i n t  g iven  by  e q u a t i o n  
(19) a n d  the  o r i e n t a t i o n  c o n s t r a i n t  o n  S g iven  by  e q u a t i o n  (20) b u t  n o t  r e q u i r i n g  the  s y m m e t r i e s  o n  S g iven  by  e q u a t i o n  (21). The  in t ens i t i e s  

( m o d u l i  o f  S )  were  ca l cu l a t ed  for a f i ve -beam {111} sys t emat i c  row in ZnS.  The  e n e r g y  of  the  i n c i d e n t  b e a m  is 100 k e V  a n d  the  crystal  is in  the  
s y m m e t r i c  o r i e n t a t i o n .  The  crystal  is a s s u m e d  to be  100 A thick.  ( f )  is a magn i f i c a t i on  of  (e) a r o u n d  the  m o d e l  va lue  of  the  phase .  
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S given by equations (18) or (19) and the orientation 
constraints on S given by equation (20), but not the 
symmetry constraints given by equation (21), to find 
solutions of the phase problem. In total, we have 
N 2 + N nonlinear constraint equations, N 2 -  N from 
unitarity and 2N equations from equation (20), 
containing N 2 + N unknowns• 

We use a global method to solve the system of 
nonlinear equations. The algorithm [implemented in 
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Fig. 2. Starting guesses for the phases of the S matrix for 1000 
solutions of the phase problem satisfying the constraint of unitarity 
of S given by equations (19), the orientation constraint on S given 
by equation (20) and also the symmetry constraint on S given by 
equation (21). The intensities (moduli of S) were calculated for a 
five-beam {111} systematic row in ZnS. The energy of the incident 
beam is 100 keV and the crystal !s in the symmetric orientation. The 
crystal is assumed to be 100 A thick. The arrows point to the 
starting guesses for the phases of two of the S-matrix elements for 
one of the arbitrarily chosen sets of initial phases. The potential 
obtained starting from this particular set of initial guesses is shown 
in Fig. 3. 

subroutine newt, described by Press et al. (1992)] 
combines the rapid local convergence of Newton's 
method for finding the roots of a system of nonlinear 
equations with a globally convergent strategy that will 
guarantee progress towards a solution at each iteration. 
To further ensure that the whole phase space is thor- 
oughly explored in finding possible solutions of these 
nonlinear equations, we have used a random-number 
generator to generate a series of sets of randomly 
chosen initial guesses for the solution of the phase 
problem. 

We expect the phase problem to only be solved up to 
a similarity transformation since an arbitrary translation 
of the origin gives ,,4 matrices and hence, via equation 
(11), S matrices that are related by a similarity trans- 
formation. Matrices that are similar have the same 
eigenvalues and therefore a comparison of the eigen- 
values of S with those of the input S is a test of the 
reasonableness of the solution. However, using the 
method outlined above [i.e. equations (19) and (20) 
only], unitary S matrices are obtained that are not 
related by a similarity transformation• Starting from a 
thousand sets of arbitrarily chosen guesses for the 
phases of S, we have found solutions to the phase 
problem that are consistent with S being unitary and 
which on inversion yield the correct diagonal elements 
of ,A. The phases of the eigenvalues of S for these 
solutions are shown in Fig. 1 (all eigenvalues have 
modulus unity). Banded solutions, which on closer 
examination show further discrete substructure are 
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Fig. 3. The input model potential and a potential obtained from 
intensities calculated from the input potential by solving the phase 
and inversion problem for a five-beam {111} systematic row in ZnS. 
The constraint of unitarity of S given by equations (19) as well as 
the constraints on S given by equations (20) and (21) were used. 
The potential found by inversion is the same as the input potential 
up to shift of origin. The guessed starting phases for two of the 
S-matrix elements are indicated in Fig. 2. The potential has 
negative values since the mean inner potential I/0 is not included. 
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Table 1. ,A matrix for the [110] zone axis in GaAs in a seven-beam approximation 

The modulus (units ,&-2) and phase of each element of the model ,,4 matrix are compared with those of an ~4 matrix found by solving the phase 
and inversion problems. 

Model Found 
i j Modulus Phase Modulus Phase 

1 1 0.1251262 3.141593 0.1251262 3.141593 
1 2 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210034E-02 1.171833 
1 3 4.5383908E-02 -0 .7456781  4.5383919E-02 -1.231796 
1 4 5.7383953E-03 0 . 0 0 0 0 0 0 0  5.7384139E-03 -0.9253497 
1 5 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210042E-02 -0.6319979 
1 6 4.5383908E-02 -0 .7456781  4.5383941E--02 -3.035627 
1 7 5.1696863E--02 0 . 0 0 0 0 0 0 0  5.1696822E-02 -1.850710 
2 2 9.3844675E-02 3 . 1 4 1 5 9 3  9 .3844689E-02 3.141593 
2 3 5.7383953E-03 0 . 0 0 0 0 0 0 0  5.7383878E-03 -0.9253545 
2 4 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210034E-02 -0.6319982 
2 5 7.6010779E-02 0 . 0 0 0 0 0 0 0  7.6010756E-02 -1.803830 
2 6 2.2602889E-03 0 . 0 0 0 0 0 0 0  2.2602931E-03 -2.729195 
2 7 4.5383908E-02 -0 .7456781  4.5383923E-02 -3.035626 
3 3 9.3844675E-02 3 . 1 4 1 5 9 3  9.3844675E-02 -3.141593 
3 4 8.2210027E-02 - 0 . 7 3 2 5 9 5 3  8.2210034E-02 -1.171833 
3 5 2.2602889E-03 0 . 0 0 0 0 0 0 0  2.2602708E-03 -0.8784839 
3 6 7.6010779E-02 0 . 0 0 0 0 0 0 0  7.6010779E-02 -1.803831 
3 7 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210034E-02 -0.6319979 
4 4 0.0000000E+00 0 . 0 0 0 0 0 0 0  1.7557491E-08 -0.4374708 
4 5 8.2210027E--02 --0.7325953 8.2210056E--02 -1.171833 
4 6 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210027E-02 -0.6319980 
4 7 5.7383953E-03 0 . 0 0 0 0 0 0 0  5.7384237E-03 -0.9253498 
5 5 9.3844675E-02 3 . 1 4 1 5 9 3  9.3844704E-02 -3.141593 
5 6 5.7383953E-03 0 . 0 0 0 0 0 0 0  5.7383808E-03 -0.9253526 
5 7 4.5383908E-02 -0 .7456781  4.5383930E-02 - 1.231795 
6 6 9.3844675E-02 3 . 1 4 1 5 9 3  9.3844660E-02 -3.141593 
6 7 8.2210027E-02 0 . 7 3 2 5 9 5 3  8.2210034E-02 1.171832 
7 7 0.1251262 3.141593 0.1251262 3.141593 

obtained. Fig. l ( f ) ,  a magnification of Fig. l (e)  around 
the model  value of the phase, clearly shows the discrete 
nature  of the broader  bands evident in Figs. l (a) - (e) .  
The phases of the eigenvalues of the model S matrix 
are shown by the solid lines. Solutions of the phase 
problem can be found that  give $ matrices not related 
by a similarity t ransformation and hence do not 
represent  the same physical potential .  The n i values for 
all the solutions found were the set {0, 0,0}. 

We repeated  the calculations just discussed for a 
thickness of 400 ~, and banded  solutions were once 
again obtained. However ,  the only solutions for ,,4 that 
occur at both thicknesses are correct ones. Therefore,  
data at different thicknesses provide us with a unique 
solution to the inversion problem (up to an arbitrary 
choice of origin). Fur thermore ,  this solution is the only 
one that  yields intensit ies correctly at or ientat ions other  
than the symmetric  orientat ion.  

Consider  again now the case where we only have 
intensity measurements  at one thickness. If we now 
impose the further  constraint  that  the S matrix has the 
symmetries  evident in equat ion (21), then we once 
again find different solutions to the phase problem but 
now all the S matrices have the same eigenvalues 
irrespective of the start ing guesses for the phases in our 
numerical  solution of the phase problem. In practice, 
we have implemented  equations (20) and (21) by 

requiring the modulus of the difference between the 
left- and r ight-hand sides of each equat ion be zero. The 
real and imaginary parts of the unitari ty equat ions were 
each included separately. 

In Fig. 2, we show the arbitrary guessed phases of two 
of the elements  of S which were input into the 
numerical  procedure to solve the nonl inear  constraint  
equat ions which yield S matrices and, by inversion, .4 
matrices with all the correct symmetries. Clearly, the 
phase space is well covered by our starting guesses for 
these two phases. Such is also the case for all the other  
e lements  of the S matrix. The S matrices finally found 
from all these sets of starting guesses are related to the 
model  by similarity t ransformations and the corre- 
sponding .4 matrices all give potentials  corresponding 
to the original potential  by a shift of origin. This indi- 
cates that, irrespective of our starting point, if we find a 
solution to the nonl inear  constraint  equations, then it 
always leads to a potential  that  is unique up to a choice 
of origin. 

The arrows in Fig. 2 point  to the starting guesses for 
the phases of two of the S-matr ix  elements  for one 
particular set of arbitrari ly chosen initial phases. The 
input model potential  and the potential  corresponding 
to the solution of the phase and inversion problem 
obta ined starting from this set of initial guesses for the 
phases of the $ matrix is shown in Fig. 3. The potential  
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Table 2. S matrix for the [110] zone axis in GaAs for 400 keV electrons incident in the exact zone-axis orientation on 
a crystal 112,4 thick 

The modulus and phase of elements of the model ,..q matrix are compared with those of an S matrix found by solving the phase problem. These S 
matrices correspond to the ..4 matrices in Table 1. 

Model Found 
i j Modulus Phase Modulus Phase 
1 1 0.7144645 -0.8613200 0.7144645 -0.8613202 
1 2 0.3965959 1.980233 0.3965959 2.419471 
1 3 0.2070741 0.6754036 0.2070741 0.1892851 
1 4 8.4514052E-02 - 2 . 3 3 9 0 9 4  8 . 4 5 1 4 0 5 2 E - 0 2  3.018733 
1 5 0.3965959 1.980233 0.3965959 0.6156400 
1 6 0.2070741 0.6754036 0.2070741 -1.614546 
1 7 0.2864644 1.639925 0.2864644 -0.2107853 
2 1 0.3758914 0.4858674 0.3758914 4.6629861E-02 
2 2 0.6914203 -0.6738561 0.6914203 -0.6738564 
2 3 2.8726360E-02 1 .427802 2 . 8 7 2 6 3 6 0 E - 0 2  0.5024490 
2 4 0.4196112 2.273396 0.4196112 0.9088027 
2 5 0.4005086 1.607214 0.4005086 -0.1966167 
2 6 2.1400725E-02 2 . 2 0 2 6 4 8  2 . 1 4 0 0 7 2 5 E - 0 2  -0.5265385 
3 1 0.2399583 2.207322 0.2399583 2.693440 
3 2 2.7373556E-02 2 .689571 2 . 7 3 7 3 5 5 6 E - 0 2  -2.668251 
3 3 0.6914203 -0.6738561 0.6914203 -0.6738561 
3 4 0.3797395 0.7808390 0.3797395 0.3416016 
3 5 4.1365739E-02 3 .122441 4 . 1 3 6 5 7 3 9 E - 0 2  2.243968 
4 1 0.1064531 1.487735 0.1064531 2.413092 
4 2 0.3797395 0.7808390 0.3797395 2.145433 
4 3 0.4196112 2.273396 0.4196112 2.712634 
4 4 0 . 5 8 3 9 2 9 6  1 . 9 7 4 2 4 5 7 E - 0 2  0 . 5 8 3 9 2 9 6  1.9742429E-02 
5 1 0.3758914 0.4858674 0.3758914 1.850461 
5 2 0.4005086 1.607214 0.4005086 -2.872141 
5 3 2.1400725E-02 2 . 2 0 2 6 4 8  2 . 1 4 0 0 7 2 5 E - 0 2  3.081137 
6 1 0.2399583 2.207322 0.2399583 -1.785915 
6 2 4.1365739E-02 3 .122441 4 . 1 3 6 5 7 3 9 E - 0 2  -0.4315567 
7 1 0.2836539 1.680123 0.2836539 -2.752351 

obta ined is identical to the model  potential  up to a shift 
of the origin. 

The calculations described above have all p roceeded  
from intensities calculated within a five-beam approx- 
imation. Intensities have also been  calculated using 51 
beams in the direct problem. Using the appropriate 
subset of these intensities as input to a solution of the 
phase and inversion problem in a five-beam approx- 
imation, we were able, to some extent,  to assess the 
effects of truncation of the phase and inversion 
problems to a smaller (finite) number  of beams when 
applied to more  realistically calculated data. The sum of 
the trucated set of intensities was, of course, such that 
the sum of the intensities for a given orientat ion was 
less than one. Nevertheless,  inversion from these 
intensities gave stable and physical solutions to the 
phase problem similar to those obta ined above, albeit at 
a lower level of accuracy. Renormal iza t ion of the 
intensities to sum to one before solving the phase and 
inversion problem once again led to physical solutions 
and with improved accuracy. 

4.2. Zone-axis case 

Lentzen & Urban (1996) used a me thod  based on the 
s imulated-anneal ing algorithm to reconstruct the 

projected crystal potential  from the exit-plane-wave 
function for the [110] zone axis in GaAs (incident 
electron energy of 400 keV).  They tested their algo- 
rithm for thicknesses of 8, 56 and 112 ,~. For the 112 A 
case, they found an incorrect solution. They suggested 
that their reconstruction of the crystal potential  belongs 
to a class of inverse scattering problems that have more  
than one solution. 

We consider the 112 ,~ case discussed by Lentzen & 
Urban (1996) in a seven-beam approximation,  assuming 
an exact zone-axis orientation.  Taking into account only 
the Hermit ian  nature of .A suggests 21 independen t  
Fourier coefficients in the ,A matrix given by equat ion 
(5). These Fourier coefficients, which have been  used as 
input to the direct problem, are shown together  with 
the diagonal e lements  of ,A in Table 1. The Fourier 
coefficients incorporate  a Debye-Wal le r  factor. A 
tempera ture  factor B = 0.6 ~2 was used for both Ga 
and As, as was per formed by Lentzen & Urban (1996). 
If in addit ion we assume that for each e lement  Ug in ,A 
the e lement  U_g is also included, then we have the 
symmetries across the 'anti-diagonal '  of ,A indicated in 
equat ion (6). Then, as can be seen by inspection of 
Table 1, there are 12 independen t  Fourier coefficients to 
be determined.  
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Exploring the solutions to the nonlinear constraint 
equations for the phases of the ,9 matrix from a global 
point of view was time consuming. Starting with arbi- 
trary guesses for the phases of the ,9-matrix elements, of 
the order of 100 solutions were found to the problem, 
so that the whole of the solution space was reasonably 
explored. All these ,9 matrices are related to the model 
input "9 matrix, which is listed in Table 2 [equation (23) 
is satisfied], by a similarity transformation. An example 
of one of the solutions to the phase problem is shown in 
Table 2 and the corresponding .,4 matrix obtained by 
inversion is given in Table 1. The potentials corre- 
sponding to solutions of the phase problem only differ 

(a) 

(b) 
Fig. 4. (a) The model projected potential for the [110] zone axis in 

GaAs at 300 K. The rectangle joins four equivalent potential points 
corresponding to the position of As atoms. (b) A potential 
obtained from intensities calculated from the input potential, 
assuming 400keV incident electrons in the exact zone-axis 
orientation and a crystal 112 ,~ thick, by solving the phase and 
inversion problems. The constraint of unitarity of S given by 
equations (19) as well as the constraints on S given by equations 
(20) and (21) were used. The potential found by inversion is the 
same as the input potential up to shift of origin, as indicated by the 
shift of the rectangle in (a) from its former position, indicated by 
the dashed rectangle. The calculations were performed in a seven- 
beam approximation. 

by a translation in real space. The projected potential 
corresponding to the ,,4 matrix found by solution of the 
phase and inversion problems and given in Table 1 is 
compared to the model potential in Fig. 4. 

5. Conclusions 

We have proposed a method to obtain the projected 
crystal potential from intensities of the diffracted beams 
in high-energy electron diffraction. At no stage during 
this procedure is it necessary to solve the direct or 
forward problem of electron diffraction. The unitarity 
of the ,9 matrix together with constraints on ,9 that 
make it consistent with information about the orienta- 
tion of the incident beam and on further general 
structure of the matrix .A are sufficient to determine the 
projected potential up to an arbitrary shift of origin. 
Since we have not solved the problem algebraically, a 
general mathematical statement on the existence and 
uniqueness of the solution for the phase and inversion 
problem (for data from a single thickness) is not 
straightforward. The question of uniqueness has been 
addressed by finding solutions starting from many 
different sets of arbitrarily chosen phases of the 
S-matrix elements. No spurious solutions, which also 
fulfilled all our requirements for a physical solution, 
were found. 

We have demonstrated the method for a systematic 
row case in a five-beam approximation and a zone-axis 
case in a seven-beam approximation (in both cases for 
noncentrosymmetric crystals). Although we chose as 
principal orientations the symmetric and exact zone- 
axis orientations, successful tests of the method have 
also been performed for arbitrary incident-beam 
directions. 

In principle, the method can be applied for larger 
numbers of beams. However, the algorithm to solve the 
phase and inversion problems involves the solution of a 
set of nonlinear equations. In general, increasing the 
number of open parameters means that such a method 
tends to ill posedness. As the number of beams 
becomes larger, greater accuracy will be required to 
achieve the excellent reconstruction of the Fourier 
coefficients in Table 1 for a seven-beam case. The 
computation time needed to find solutions of the 
nonlinear equations was typically of the order of tens of 
seconds for the five-beam case and for the seven-beam 
case it was a few minutes. Solutions in a 13-beam 
approximation were tried and solution times were 
several hours. Calculations were performed on a 
Pentium-based personal computer. However, no 
attempt was made to optimize the solution method with 
respect to speed, with accuracy of the solutions found 
being the main consideration. Further work will explore 
more efficient methods of solution and also study the 
conditions under which analytic solutions may be 
possible. 
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The stability of this approach in the presence of 
errors in measured intensities, the precision needed in 
the energy and or ienta t ion of the incident beam and 
inelastic scattering effects are important  considerat ions 
for future work. 
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